Linux from scratch arm

Создание образа Ubuntu для ARM «from scratch»

Когда разработка только начинается часто еще непонятно какие именно пакеты пойдут в целевую rootfs.

Иными словами хвататься за LFS, buildroot или yocto (или еще что-то) еще рано, а начинать уже нужно. Для богатых (у меня на пилотных образцах 4GB eMMC) есть выход раздать разработчикам дистрибутив, который позволит оперативно доставить что-то чего не хватает в данный момент, а затем мы всегда можем собрать списки пакетов и сформировать список для целевой rootfs.

Данная статья не несет в себе новизны и представляет из себя простую copy-paste инструкцию.

Цель статьи сборка Ubuntu rootfs для ARM борды (в моем случае на базе Colibri imx7d).

Сборка образа

Собираем целевой rootfs для тиражирования.

Распаковываем Ubuntu Base

Релиз выбираем сами исходя из необходимости и собственных предпочтений. Здесь я привел 20.

Проверка поддержки BINFMT в ядре

Если у вас распространенный дистрибутив, то поддержка BINFMT_MISC есть и все настроено, если нет — то я уверен, что вы знаете как включить поддержку BINFMT в ядре.

Убедитесь, что BINFMT_MISC включено в ядре:

Теперь надо проверить настройки:

Зарегистрировать вручную можно с помощью, например, вот этой инструкции.

Настройка qemu static arm

Теперь нам понадобится экземпляр qemu собранный статически.

Chroot

Любуемся на полученный результат:

Ради интереса замерим размер до и после установки минимального (для меня) набора пакетов:

Установим интересующие нас пакеты:

Заголовочные файлы ядра, модули, это отдельный разговор. Загрузчик, ядро, модули, device tree через Ubuntu мы конечно же не поставим. Они придут к нам извне или сами соберем или нам их выдаст производитель борды, в любом случае это за гранью данной инструкции.

До какой-то степени расхождение версий допустимо, но лучше взять их со сборки ядра.

Смотрим, что получилось и получилось немало:

Не забудьте задать пароль.

Пакуем образ

Дополнительно можем поставить etckeeper с настройкой autopush

Ну допустим раздали мы нашу сборку, работа пошла, как лучше собрать потом различные версии нашей системы.

На помощь нам может прийти etckeeper.

Безопасность личное дело каждого:

  • можете защитить определённые ветки
  • генерировать уникальный ключ для каждого устройства
  • запретить force push
  • и т.д. .

Настроим autopush

Можем конечно заранее же создать ветки на устройстве (допустим сделать скрипт или службу, которая отработает при первом запуске).

А можем поступить хитрее.

Ленивый путь

Пусть у нас будет какой-то уникальный идентификатор, допустим серийный номер процессора (ну или MAC — серьезные компании покупают диапазон):

Тогда мы можем использовать его для имени ветки в которую будем пушить:

Создадим простой скрипт:

И всё — через некоторое время можем посмотреть изменения и сформировать список пакетов для целевой прошивки.

Источник

Заводим GNU/Linux на ARM-плате с нуля (на примере Kali и iMX.6)

tl;dr: собираю образ Kali Linux для ARM-компьютера, в программе debootstrap , linux и u-boot .

Если вы покупали какой-нибудь не очень популярный одноплатник, то могли столкнуться с отсутствием для него образа любимого дистрибутива. Приблизительно то же самое случилось с планируемым Flipper One. Kali Linux под IMX6 просто нету (я готовлю), поэтому собирать приходится самостоятельно.

Читайте также:  Схема разделов для установки mac os

Процесс загрузки достаточно простой:

  1. Инициализируется железо.
  2. Из некоторой области на запоминающем устройства (SD-карта/eMMC/etc) считывается и выполняется загрузчик.
  3. Загрузчик ищет ядро операционной системы и загружает его в некоторую область памяти и выполняет.
  4. Ядро загружает всю остальную ОС.

Для моей задачи хватает такого уровня детализации, подробности можете прочесть в другой статье. Упомянутые выше «некоторые» области отличаются от платы к плате, что и создаёт некоторые сложности с установкой. Загрузку серверных ARM-платформ пытаются стандартизовать с помощью UEFI, но покуда это доступно не для всех, придётся собирать всё по отдельности.

Сборка корневой файловой системы

Для начала нужно подготовить разделы. Das U-Boot поддерживает разные ФС, я выбрал FAT32 для /boot и ext3 для корня, это стандартная разметка образов для Kali под ARM. Я воспользуюсь GNU Parted, но вы можете сделать то же самое более привычным fdisk . Также понадобятся dosfstools и e2fsprogs для создания ФС: apt install parted dosfstools e2fsprogs .

  1. Отмечаем SD-карту как использующую MBR-разметку: parted -s /dev/mmcblk0 mklabel msdos
  2. Создаём раздел под /boot на 128 мегабайт: parted -s /dev/mmcblk0 mkpart primary fat32 1MiB 128MiB . Первый пропущенный мегабайт необходимо оставить под саму разметку и под загрузчик.
  3. Создаём корневую ФС на всю оставшуюся ёмкость: parted -s /dev/mmcblk0 mkpart primary ext4 128MiB 100%
  4. Если вдруг у вас не создались или не изменились файлы разделов, надо выполнить `partprobe`, тогда таблица разделов будет перечитана.
  5. Создаём файловую систему загрузочного раздела с меткой BOOT : mkfs.vfat -n BOOT -F 32 -v /dev/mmcblk0p1
  6. Создаём корневую ФС с меткой ROOTFS : mkfs.ext3 -L ROOTFS /dev/mmcblk0p2

Отлично, теперь можно её заполнять. Для этого дополнительно потребуется debootstrap , утилита для создания корневых ФС Debian-подобных операционных систем: apt install debootstrap .

  1. Монтируем раздел в /mnt/ (используйте более удобную для себя точку монтирования): mount /dev/mmcblk0p2 /mnt
  2. Собственно заполняем файловую систему: debootstrap —foreign —include=qemu-user-static —arch armhf kali-rolling /mnt/ http://http.kali.org/kali . Параметр —include указывает дополнительно установить некоторые пакеты, я указал статически собранный эмулятор QEMU. Он позволяет выполнять chroot в ARM-окружение. Смысл остальных опций можно посмотреть в man debootstrap . Не забудьте, что не любая ARM-плата поддерживает архитектуру armhf .
  3. Из-за разницы архитектур debootstrap выполняется в два этапа, второй выполняется так: chroot /mnt/ /debootstrap/debootstrap —second-stage
  4. Теперь нужно зачрутиться: chroot /mnt /bin/bash
  5. Заполняем /etc/hosts и /etc/hostname целевой ФС. Заполните по аналогии с содержимым на вашем локальном компьютере, не забудьте только заменить имя хоста.
  6. Можно донастроить всё остальное. В частности я доустанавливаю locales (ключи репозитория), перенастраиваю локали и часовой пояс ( dpkg-reconfigure locales tzdata ). Не забудьте задать пароль командой passwd .
  7. Задаём пароль для root командой passwd .
  8. Приготовления образа для меня завершаются заполнением /etc/fstab внутри /mnt/ .

Загружать буду в соответствии с созданными ранее метками, поэтому содержимое будет таким:

LABEL=ROOTFS / auto errors=remount-ro 0 1
LABEL=BOOT /boot auto defaults 0 0

Наконец, можно примонтировать загрузочный раздел, он нам понадобится для ядра: `mount /dev/mmcblk0p1 /mnt/boot/`

Сборка Linux

Для сборки ядра (и загрузчика потом) на Debian Testing надо установить стандартный набор из GCC, GNU Make и заголовочных файлов GNU C Library для целевой архитектуры (у меня armhf ), а также заголовки OpenSSL, консольный калькулятор bc , bison и flex : apt install crossbuild-essential-armhf bison flex libssl-dev bc . Так как загрузчик по умолчанию ищет файл zImage на файловой системе загрузочного раздела, пора разбивать флешку.

  1. Клонировать ядро слишком долго, поэтому просто скачаю: wget https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.9.1.tar.xz . Распакуем и перейдём в директорию с исходниками: tar -xf linux-5.9.1.tar.xz && cd linux-5.9.1
  2. Конфигурируем перед компиляцией: make ARCH=arm KBUILD_DEFCONFIG=imx_v6_v7_defconfig defconfig . Конфиг находится в директории arch/arm/configs/ . Если такового нет, вы можете попробовать найти и скачать готовый и передать название файла в этой директории в параметр KBUILD_DEFCONFIG . В крайнем случае сразу переходите к следующему пункту.
  3. Опционально можно докрутить настройки: make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- menuconfig
  4. И кроскомпилируем образ: make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-
  5. Теперь можно скопировать файлик с ядром: cp arch/arm/boot/zImage /mnt/boot/
  6. И файлы с DeviceTree (описание имеющегося на плате железа): cp arch/arm/boot/dts/*.dtb /mnt/boot/
  7. И доустановить собранные в виде отдельных файлов модули: make ARCH=arm CROSS_COMPILE=arm-linux-gnueabi- INSTALL_MOD_PATH=/mnt/ modules_install
Читайте также:  Windows 10 не видит вай фай роутер

Ядро готово. Можно всё отмонтировать: umount /mnt/boot/ /mnt/

Das U-Boot

Так как загрузчик интерактивный, для проверки его работы достаточно самой платы, запоминающего устройства и опционально устройства USB-to-UART. То есть, можно ядро и ОС отложить на потом.

Абсолютное большинство производителей предлагают использовать Das U-Boot для первичной загрузки. Полноценная поддержка обычно обеспечивается в собственном форке, но и в апстрим контрибьютить не забывают. В моём случае плата поддерживается в мейнлайне, поэтому форк я проигнорировал.

Cобираем сам загрузчик:

  1. Клонируем стабильную ветку репозитория: git clone https://gitlab.denx.de/u-boot/u-boot.git -b v2020.10
  2. Переходим в саму директорию: cd u-boot
  3. Готовим конфигурацию сборки: make mx6ull_14x14_evk_defconfig . Это работает только если конфигурация есть в самом Das U-Boot, в ином случае вам потребуется найти конфиг производителя и положить его в корень репозитория в файл .config , или собрать иным рекомендованным производителем образом.
  4. Собираем сам образ загрузчика кросс-компилятором armhf : make CROSS_COMPILE=arm-linux-gnueabihf- u-boot.imx

В результате мы получаем файл u-boot.imx , это готовый образ, который можно записывать на флешку. Записываем на SD-карту, пропустив первые 1024 байта. Почему я выбрал таргет u-boot.imx ? Почему пропустил именно 1024 байта? Так предлагают сделать в документации. Для других плат процесс сборки образа и записи может немного отличаться.

Готово, можно загрузиться. Загрузчик должен сообщить собственную версию, некоторую информацию о плате и попытаться найти образ ядра на разделе. В случае неудачи будет пытаться загрузиться по сети. В целом вывод довольно подробный, можно найти ошибку в случае проблемы.

Вместо заключения

А вы знали, что лоб у дельфина не костистый? Это буквально третий глаз, жировая линза для эхолокации!

Источник

Кросскомпиляция под ARM

Достаточно давно хотел освоить сабж, но всё были другие более приоритетные дела. И вот настала очередь кросскомпиляции.

В данном посте будут описаны:

  1. Инструменты
  2. Элементарная технология кросскомпиляции
  3. И, собственно, HOW2

Кому это интересно, прошу под кат.

Вводная

Одно из развивающихся направлений в современном IT это IoT. Развивается это направление достаточно быстро, всё время выходят всякие крутые штуки (типа кроссовок со встроенным трекером или кроссовки, которые могут указывать направление, куда идти (специально для слепых людей)). Основная масса этих устройств представляют собой что-то типа «блютуз лампочки», но оставшаяся часть являет собой сложные процессорные системы, которые собирают данные и управляют этим огромным разнообразием всяких умных штучек. Эти сложные системы, как правило, представляют собой одноплатные компьютеры, такие как Raspberry Pi, Odroid, Orange Pi и т.п. На них запускается Linux и пишется прикладной софт. В основном, используют скриптовые языки и Java. Но бывают приложения, когда необходима высокая производительность, и здесь, естественно, требуются C и C++. К примеру, может потребоваться добавить что-то специфичное в ядро или, как можно быстрее, высчитать БПФ. Вот тут-то и нужна кросскомпиляция.

Читайте также:  Линукс как посмотреть dns

Если проект не очень большой, то его можно собирать и отлаживать прямо на целевой платформе. А если проект достаточно велик, то компиляция на целевой платформе будет затруднительна из-за временных издержек. К примеру, попробуйте собрать Boost на Raspberry Pi. Думаю, ожидание сборки будет продолжительным, а если ещё и ошибки какие всплывут, то это может занять ох как много времени.

Поэтому лучше собирать на хосте. В моём случае, это i5 с 4ГБ ОЗУ, Fedora 24.

Инструменты

Для кросскомпиляции под ARM требуются toolchain и эмулятор платформы либо реальная целевая платформа.

Т.к. меня интересует компиляция для ARM, то использоваться будет и соответствующий toolchain.

Toolchain’ы делятся на несколько типов или триплетов. Триплет обычно состоит из трёх частей: целевой процессор, vendor и OS, vendor зачастую опускается.

  • *-none-eabi — это toolchain для компиляции проекта работающего в bare metal.
  • *eabi — это toolchain для компиляции проекта работающего в какой-либо ОС. В моём случае, это Linux.
  • *eabihf — это почти то же самое, что и eabi, с разницей в реализации ABI вызова функций с плавающей точкой. hf — расшифровывается как hard float.

Описанное выше справедливо для gcc и сделанных на его базе toolchain’ах.

Сперва я пытался использовать toolchain’ы, которые лежат в репах Fedora 24. Но был неприятно удивлён этим:

Поискав, наткнулся на toolchain от компании Linaro. И он меня вполне устроил.

Второй инструмент- это QEMU. Я буду использовать его, т.к. мой Odroid-C1+ пал смертью храбрых (нагнулся контроллер SD карты). Но я таки успел с ним чуток поработать, что не может не радовать.

Элементарная технология кросскомпиляции

Собственно, ничего необычного в этом нет. Просто используется toolchain в роли компилятора. А стандартные библиотеки поставляются вместе с toolchain’ом.

Выглядит это так:

Какие ключи у toolchain’а можно посмотреть на сайте gnu, в соответствующем разделе.

Для начала нужно запустить эмуляцию с интересующей платформой. Я решил съэмулировать Cortex-A9.

После нескольких неудачных попыток наткнулся на этот how2, который оказался вполне вменяемым, на мой взгляд.

Ну сперва, само собою, нужно заиметь QEMU. Установил я его из стандартных репов Fedor’ы.

Далее создаём образ жёсткого диска, на который будет установлен Debian.

По этой ссылке скачал vmlinuz и initrd и запустил их в эмуляции.

Далее просто устанавливаем Debian на наш образ жёсткого диска (у меня ушло

После установки нужно вынуть из образа жёсткого диска vmlinuz и initrd. Делал я это по описанию отсюда.

Сперва узнаём смещение, где расположен раздел с нужными нам файлами:

Теперь по этому смещению примонтируем нужный нам раздел.

Копируем файлы vmlinuz и initrd и размонтируем жёсткий диск.

Теперь можно запустить эмуляцию.

И вот заветное приглашение:

Теперь с хоста по SSH можно подцепиться к симуляции.

Теперь можно и собрать программку. По Makefile’у ясно, что будет калькулятор. Простенький.

Собираем на хосте исполняемый файл.

Отмечу, что проще собрать с ключом -static, если нет особого желания предаваться плотским утехам с библиотеками на целевой платформе.

Копируем исполняемый файл на таргет и проверяем.

Собственно, вот такая она, эта кросскомпиляция.

UPD: Подправил информацию по toolchain’ам по комментарию grossws.

Источник

Оцените статью