Efi boot partition linux

EFI system partition

The EFI system partition (also called ESP) is an OS independent partition that acts as the storage place for the EFI bootloaders, applications and drivers to be launched by the UEFI firmware. It is mandatory for UEFI boot.

This article or section is a candidate for moving to Unified Extensible Firmware Interface#UEFI drivers.

The UEFI specification mandates support for the FAT12, FAT16, and FAT32 file systems (see UEFI specification version 2.8, section 13.3.1.1), but any conformant vendor can optionally add support for additional file systems; for example, the firmware in Apple Macs supports the HFS+ file system.

Contents

Check for an existing partition

If you are installing Arch Linux on an UEFI-capable computer with an installed operating system, like Windows 10 for example, it is very likely that you already have an EFI system partition.

To find out the disk partition scheme and the system partition, use fdisk as root on the disk you want to boot from:

The command returns:

  • The disk’s partition table: it indicates Disklabel type: gpt if the partition table is GPT or Disklabel type: dos if it is MBR.
  • The list of partitions on the disk: Look for the EFI system partition in the list, it is usually at least 100 MiB in size and has the type EFI System or EFI (FAT-12/16/32) . To confirm this is the ESP, mount it and check whether it contains a directory named EFI , if it does this is definitely the ESP.

If you found an existing EFI system partition, simply proceed to #Mount the partition. If you did not find one, you will need to create it, proceed to #Create the partition.

Create the partition

The following two sections show how to create an EFI system partition (ESP).

To provide adequate space for storing boot loaders and other files required for booting, and to prevent interoperability issues with other operating systems[1][2] the partition should be at least 260 MiB. For early and/or buggy UEFI implementations the size of at least 512 MiB might be needed.[3]

GPT partitioned disks

EFI system partition on a GUID Partition Table is identified by the partition type GUID C12A7328-F81F-11D2-BA4B-00A0C93EC93B .

Choose one of the following methods to create an ESP for a GPT partitioned disk:

  • fdisk: Create a partition with partition type EFI System .
  • gdisk: Create a partition with partition type EF00 .
  • GNU Parted: Create a partition with fat32 as the file system type and set the esp flag on it.

Proceed to #Format the partition section below.

MBR partitioned disks

EFI system partition on a Master Boot Record partition table is identified by the partition type ID EF .

Choose one of the following methods to create an ESP for a MBR partitioned disk:

  • fdisk: Create a primary partition with partition type EFI (FAT-12/16/32) .
  • GNU Parted: Create a primary partition with fat32 as the file system type and set the esp flag on it.

Proceed to #Format the partition section below.

Format the partition

The UEFI specification mandates support for the FAT12, FAT16, and FAT32 file systems[4]. To prevent potential issues with other operating systems and also since the UEFI specification only mandates supporting FAT16 and FAT12 on removable media[5], it is recommended to use FAT32.

After creating the partition, format it as FAT32. To use the mkfs.fat utility, install dosfstools .

If you get the message WARNING: Not enough clusters for a 32 bit FAT! , reduce cluster size with mkfs.fat -s2 -F32 . or -s1 ; otherwise the partition may be unreadable by UEFI. See mkfs.fat(8) for supported cluster sizes.

Mount the partition

The kernels, initramfs files, and, in most cases, the processor’s microcode, need to be accessible by the boot loader or UEFI itself to successfully boot the system. Thus if you want to keep the setup simple, your boot loader choice limits the available mount points for EFI system partition.

Typical mount points

The simplest scenarios for mounting EFI system partition are:

  • mount ESP to /efi and use a boot loader which is capable of accessing the kernel(s) and initramfs image(s) that are stored elsewhere (typically /boot). See Arch boot process#Boot loader for more information on boot loader requirements and capabilities.
  • mount ESP to /boot . This is the preferred method when directly booting an EFISTUB kernel from UEFI or booting it via a boot manager like systemd-boot.
  • mount ESP to /efi and additionally mount an «Extended Boot Loader Partition» (XBOOTLDR) to /boot . This can be useful when a previously created ESP is too small to hold multiple boot loaders and/or kernels but the ESP cannot be easily resized (such as when installing Linux after Windows to dual boot). This method is supported by at least systemd-boot.

Alternative mount points

If you do not use one of the simple methods from #Typical mount points, you will need to copy your boot files to ESP (referred to hereafter as esp ).

Furthermore, you will need to keep the files on the ESP up-to-date with later kernel updates. Failure to do so could result in an unbootable system. The following sections discuss several mechanisms for automating it.

Читайте также:  Как двигать курсор с помощью клавиатуры windows

Using bind mount

Instead of mounting the ESP itself to /boot , you can mount a directory of the ESP to /boot using a bind mount (see mount(8) ). This allows pacman to update the kernel directly while keeping the ESP organized to your liking.

Just like in #Alternative mount points, copy all boot files to a directory on your ESP, but mount the ESP outside /boot . Then bind mount the directory:

After verifying success, edit your Fstab to make the changes persistent:

Using systemd

Systemd features event triggered tasks. In this particular case, the ability to detect a change in path is used to sync the EFISTUB kernel and initramfs files when they are updated in /boot/ . The file watched for changes is initramfs-linux-fallback.img since this is the last file built by mkinitcpio, to make sure all files have been built before starting the copy. The systemd path and service files to be created are:

Then enable and start efistub-update.path .

Using filesystem events

Filesystem events can be used to run a script syncing the EFISTUB Kernel after kernel updates. An example with incron follows.

In order to use this method, enable the incrond.service .

Using mkinitcpio hook

Mkinitcpio can generate a hook that does not need a system level daemon to function. It spawns a background process which waits for the generation of vmlinuz , initramfs-linux.img , and initramfs-linux-fallback.img before copying the files.

Add efistub-update to the list of hooks in /etc/mkinitcpio.conf .

Using mkinitcpio preset

As the presets in /etc/mkinitcpio.d/ support shell scripting, the kernel and initramfs can be copied by just editing the presets.

Replacing the above mkinitcpio hook

Edit the file /etc/mkinitcpio.d/linux.preset :

To test that, just run:

Another example

Using pacman hook

A last option relies on the pacman hooks that are run at the end of the transaction.

The first file is a hook that monitors the relevant files, and it is run if they were modified in the former transaction.

The second file is the script itself. Create the file and make it executable:

Troubleshooting

ESP on software RAID1

It is possible to make the ESP part of a RAID1 array, but doing so brings the risk of data corruption, and further considerations need to be taken when creating the ESP. See [8] and [9] for details and UEFI booting and RAID1 for an in-depth guide with a solution.

The key part is to use —metadata 1.0 in order to keep the RAID metadata at the end of the partition, otherwise the firmware will not be able to access it:

Источник

На какой диск (или раздел) устанавливать загрузчик при установке Linux

Если у вас только один диск в компьютере с одним разделом, то установщик не спросит, на какой диск установить загрузчик системы. На других компьютерах (как с UEFI, так и с БИОСом) с несколькими дисками, установщик может спросить, на какой диск установить загрузчик.

Чтобы принять решение, нужно иметь общие представления о загрузке операционной системе на ПК. Упрощённо говоря, происходит следующее:

1. БИОС (UEFI) проверяет, какой диск выбран для загрузки и передаёт управление загрузчику на этом диске.

2. Загрузчик указанного диска начинает работу, если в его настройках прописано несколько операционных систем, то он показывает пользователю меню для выбора. Если операционная система только одна, то просто загружает её.

Так вот, если у вас уже установлен Windows, то вариантов два:

  1. Установить загрузчик Linux вместо загрузчика Windows, на диск с Windows
  2. Установить загрузчик Linux на диск с самой Linux

В БИОС

Преимущества первого варианта:

  • Для выбора загружаемой операционной системы не нужно менять настройки БИОСа — можно выбрать нужную ОС в меню загрузки Linux

Недостатки первого варианта:

  • Загрузчик Windows стирается, и если вы захотите его восстановить, то нужно будет использовать специальную программу (смотрите эту статью, раздел «Восстановление загрузчика Windows 10«).
  • Если вы даже удалите Linux, всё равно будет появляться меню выбора ОС для загрузки.

Преимущество второго варианта:

  • Загрузчики Windows и Linux будут сохранены, они будут располагаться каждый на своём диске, независимо друг от друга.
  • Если вы решите удалить Linux, то не нужно беспокоиться о восстановлении загрузчика Windows.
  • Диск с Linux можно переставить в другой компьютер и он будет работать!
  • Загрузчик Linux сам найдёт все операционные системы на всех дисках и добавит их в меню, показываемое при загрузке. Вы можете выбрать любую ОС при включении компьютера.

Недостатки второго варианта:

  • Чтобы при включении компьютера начал загружаться диск с Linux, нужно изменить настройки БИОСа, а именно выбрать соответствующий диск.

На мой взгляд, второй вариант намного лучше, поэтому я устанавливаю загрузчик Linux на диск с Linux.

В UEFI

В UEFI имеется специальный небольшой раздел (100-200 мегабайт) в котором хранятся загрузчики операционных систем. В Linux этот раздел монтируется в директорию /boot и загрузчики хранятся в папках в /boot/efi/EFI или /boot/efi/ или похожих.

Установка загрузчика на диск в UEFI означает создание новой папки с загрузчиком нового дистрибутива. На этом скриншоте можно видеть загрузчики двух ОС.

На самом деле, там ещё есть и Linux Mint, но она свои файлы поместила в директорию BOOT.

Пункт загрузки UEFI можно отредактировать (удалить или добавить новые) в настройках UEFI.

При установке загрузчика на диск с Windows, в принципе, это должно работать также. Но я не проверял! В случае проблем с Windows, смотрите эту статью, раздел «Восстановление загрузчика Windows 10«).

Если у вас несколько операционных систем установлены на разных разделах диска и вы установили их загрузчики в собственные разделы, как это показано на скриншоте (системный загрузчик установлен в четвёртый раздел диска):

Читайте также:  Windows live mail 2011 не запускается

то, чтобы загрузить эту новую ОС нужно в дистрибутиве, в котором вы можете загрузиться, выполнить следующую команду:

Эта команда просканирует все диски и добавит в меню загрузки данного дистрибутива все найденные операционные системы.

Что касается UEFI, то в его настройках вместо дисков и разделов должны быть перечислены все доступные для загрузки операционные системы, либо их можно указать вручную.

Источник

Linux Kernel EFI Boot Stub или «Сам себе загрузчик»

Введение

Прочитав недавнюю статью Загрузка ОС Linux без загрузчика, понял две вещи: многим интересна «новинка», датируемая аж 2011 годом; автор не описал самого основного, без чего, собственно, и работать ничего не будет в некоторых случаях. Также была ещё одна статья, но либо она уже устарела, либо там опять таки много лишнего и недосказанного одновременно.

Итак, что же такое Linux Kernel EFI Boot Stub?

Общая информация

А ни что иное, как… «exe-файл»! Да-да, «виндовый» PE/COFF. Ну, а точнее, только закос под него с небольшими модификациями, чтобы угодить загрузчику UEFI. Можно убедиться в этом, прочитав первые 2 байта ядра:

Знакомо, не правда ли? Как минимум тем, кто хоть раз «для интереса» открывал исполняемый файл MS-DOS или Windows в блокноте, хекс-редакторе или чём-то покруче. Это инициалы Марка Збиковски, который, собственно, и разработал данный формат файлов в MS-DOS. Сигнатура этой заглушки до сих пор висит рудиментом в современных исполнимых файлах Windows, сжирая со своим заголовком целых 64 байта на каждый файл!

DOS-заголовок попадает на legacy-код, который выполняется в случае загрузки ядра как бут-сектора, и ругается на манеру MS-DOS при запуске PE-файлов: «Direct floppy boot is not supported. Use a boot loader program instead. Remove disk and press any key to reboot . ». Поэтому информация из этого заголовка здесь является мусором, кроме, собственно, сигнатуры ‘MZ’ и адреса смещения следующего заголовка.

Идём дальше.
Спецификация PE/COFF говорит нам, что по смещению 0x3c находится 32-битное смещение второго заголовка с сигнатурой «PE\0\0»:

итак, смещение равно 0xb8, что справедливо для текущего stable-ядра x86_64 архитектуры, на x86 будет 0xa8. Читаем:

А вот и сигнатура второго заголовка! Как можно было догадаться, это аббревиатура от словосочетания Portable Executable, с которой и начинается полезная нагрузка в исполнимых файлах.

Даже загрузчик Windows плевал на половину полей этого заголовка, а уж UEFI они и вовсе не нужны, поэтому некоторые из них прописаны статически, важные же — заполняются во время сборки ядра. Множество «ненужных» полей, всяких таймстемпов, котрольных сумм и пр. просто остаются нулями. Заполняются в основном размеры, смещения, точка входа и т. д. Поэтому, можно с натяжкой назвать данный PE-файл полностью валидным. Однако, классические утилиты LordPE или PETools вполне себе довольствуются сигнатурами и рассказывают о файле всё, что им известно:

Основное отличие от «реальных» исполняемых файлов в Windows — это флаг Subsystem опционального заголовка, который выставляется в IMAGE_SUBSYSTEM_EFI_APPLICATION, а не в IMAGE_SUBSYSTEM_WINDOWS_GUI для графических или IMAGE_SUBSYSTEM_WINDOWS_CUI для символьных (консольных) приложений Windows соответственно.

Структура

В общем же, всё как в обычном PE-файле. На текущий момент стабильной версии 3.11.4 ядра Arch Linux из репозиториев, в нём содержатся 3 секции: ‘.setup’, ‘.reloc’ и ‘.text’.

  • Секция .setup, содержит в основном legacy-код для инициализации в случае загрузки в режиме совместимости. При загрузке же в UEFI mode, все переключения режимов процессора, начальные инициализации производит прошивка.
  • .reloc секция обязательно требуется загрузчиком, поэтому при сборке ядра создаётся пустая заглушка «чтоб было».
  • Самая интересная секция .code, собственно, содержит EntryPoint и основной код всего остального ядра. После того, как EFI-application найдено, загрузчик выполняет загрузочный сервис LoadImage, тем самым загружая весь образ в память. Тип резидентности зависит от поля Subsystem: EFI_APPLICATION будет выгружаться, когда отработает. EFI_DRIVER же может быть Unloadable и выгрузится только в случае критической ошибки. Далее передаётся управление на точку входа, обычно это функция efi_main() — аналог main() в C.

На самом деле, я немного слукавил, в начале назвав ядро exe-файлом. По сути это простое себе приложение EFI, которое использует формат PE32+.

Основные требования

Прежде всего, необходимо активировать режим загрузки EFI-mode. Пункт может называться как вдумается вендору, обычно находится во вкладке Boot Options. Если увидели там что-то вроде Legacy Mode или CSM (Compatibility Support Mode), либо просто BOIS Mode, меняйте на что-то похожее: (U)EFI Mode, Enhanced Mode или Advanced Mode.

Если материнская плата имеет логотип «Windows 8 Ready!», то, скорее всего, режим EFI Boot Mode уже активирован по умолчанию.

В большинстве случаев, для загрузки ядра Linux в EFI-mode необходимо выключить опцию Secure Boot.

Разметка диска

Многие источники указывают, что обязательно нужна разметка диска GPT, а не MBR, но это не так. UEFI вполне себе умеет MBR. Другое дело, например, Windows насильно заставляет разбивать диск новым методом, чтобы грузиться в EFI mode и ругается на древность Master Boot Record’а. И правильно делает! Разметив диск «современно» ничего не потеряем, а только выиграем.
Во-первых, не будет проблем со всякими там Primary/Logical разделами, «туда не ходи — сюда ходи» и прочими рудиментами.
Во-вторых, хоть сейчас и продвигаются массово SolidState-диски, у которых объёмы пока не сильно удивляют, размером же обычной «вертушки» в несколько терабайт сейчас уже никого не удивишь. А ведь под MBR можно разметить раздел максимум около 2ТБ. GPT же, видит ну очень много, можно даже цифру не называть — относительно не скоро появятся диски таких размеров.
Ну и плюс всякие бонусы, типа дублирования GPT-записи в начале и конце диска, контрольные суммы целостности и т. п., добавляют желания не раздумывая размечать диск под GPT.

Статей, как разбить диск с помощью различных утилит в GNU/Linux можно найти огромное количество.

Отдельный раздел
Тип раздела

Спустя nn-цать лет разработки стандартов, инженеры таки решили, что хардкодить — не есть хорошо. Теперь не важно где находится наш загрузочный раздел, загрузчик UEFI делает очень просто: он перебирает все подряд разделы и диски и ищет один особенный. Особенность его заключается в том, что в случае с MBR-разметкой, он имеет тип с кодом 0xEF (как можно догадаться, от EFI). В случае разметки GPT — раздел с GUID равным C12A7328-F81F-11D2-BA4B-00A0C93EC93B.

Читайте также:  Songpal для windows 10

Здесь существует некоторая неявность. Все утилиты для разметки, например, parted, имеют свойство установки и отображения флага «boot», который применяется к разделу. Так вот, в случае с MBR, такая возможность действительно имеется, т. е. существует реальный байт, который указывает БИОСу на «загрузочность» раздела. Этот флаг можно поставить на любой раздел, MBR которого, мы хотим скормить БИОСу для загрузки. Но, когда мы имеем дело с GPT, никакого флага в действительности нет! Под этим флагом parted понимает как раз GUID равный вышеуказанному. Т. е. по факту GPT boot flag = GPT EFI Partition!

Вывод: если наш EFI-раздел на MBR — ставим тип раздела EFI Partition и boot flag. Если GPT — либо тип EFI Partition, либо boot flag, так как они представляют собой одно и то же.

Есть ещё всякие вещи, типа GPT legacy boot flag, который устанавливается в Protective MBR, и прочее, но всё это костыли, которые используются только в режиме совместимости. В режиме GPT UEFI Boot должны игнорироваться.

Файловая система

В разных источниках пишут по-разному. Кто-то говорит, что FAT16 можно использовать, кто-то даже FAT12 рекомендует. Но, не лучше ли последовать совету официальной спецификации? А она говорит, что системный раздел должен быть в FAT32. Для removable-media (USB HDD, USB Flash) — ещё и FAT12/FAT16 в придачу к FAT32.
Про размер раздела ничего не говорится. Однако, по причине начальных костыльных и баганых реализаций загрузчиков и прошивок, опытным путём народ выяснил, что во избежание различных «внезапностей», рекомендуется размер не менее 520МиБ (546МБ). Здесь как повезёт, проблем может не быть и с 32-мегабайтным разделом.

Структура директорий

После того, как загрузчик нашёл свой «меченый» раздел и убедился, что поддерживает файловую систему, он начинает выполнять все действия с путями, относительно корня раздела. Кроме того, все файлы в данном разделе должны находиться в директории \EFI\, которая, в свою очередь, является единственной в корне раздела. По соглашению, каждому вендору рекомендуется выделить себе папку с уникальным названием и поместить её в \EFI\, например: \EFI\redhat\, \EFI\microsoft\, \EFI\archlinux\. В директории вендора находятся непосредственно исполнимые efi-приложения. Рекомендуется один файл на одну архитектуру. Файлы должны иметь расширение .efi.

Для съёмных устройств предназначена директория \EFI\BOOT\. В ней так же рекомендуется не более одного файла для каждой архитектуры. В дополнение к этому, файл должен называться boot.efi. Например, \EFI\BOOT\bootx64.efi. Доступные архитектуры: ia32, x64, ia64, arm, aa64.

Доступ к NVRAM

По умолчанию, если ничего не записано в энергонезависимой памяти UEFI, будет загружаться \EFI\BOOT\bootx64.efi. Чтобы записать в NVRAM путь к необходимому приложению, можно воспользоваться утилитой efibootmgr. Попробуем вывести текущие записи:

В некоторых дистрибутивах для работы этой утилиты требуется включенная опция ядра CONFIG_EFI_VARS.

Приступаем

Чтобы проверить, была ли включена опция при сборке ядра, выполним:
либо

CONFIG_EFI_STUB=y означает, что опция активна.

  • Как вариант, при обновлении ядра, каждый раз копировать его и ram-disk в ESP\\
  • Можно поставить EFI driver на чтение файловой системы /boot и грузиться напрямую, лишь добавив к ядру расширение ‘.efi’ (а лучше хардлинк).
  • Теперь нужно как-то добавить загрузочный пункт в NVRAM UEFI. Здесь снова множество вариантов:

    Если мы уже загружены в режиме EFI (efibootmgr -v не ругается) с помощью загрузчиков GRUB2, rEFInd и т. п., то всё нормально:

    • Используем efibootmgr, который умеет передавать параметры ядра.
    • Если efibootmgr брыкается, можно воспользоваться UEFI Shell, который, как и наше ядро, является EFI-приложением. Через его команду bcfg возможно редактировать пункты загрузки.
    • Может быть такой вариант: efibootmgr ругается на добавление параметров, значит прошивка не поддерживает их запись (либо просто кривая, что вероятнее). В прошлой статье в комментах упомянули параметр ядра efi_no_storage_paranoia , который может помочь. Но пользоваться им можно только если вы уверены в том, что ваша прошивка реализована полностью в соответствии со спецификацией! Разработчики предупреждают, что если вендор добавил костылей и отсебятины при реализации, есть неиллюзорная вероятность материализовать кирпич на месте материнской платы.
    • Можно также грузиться через UEFI Shell. Для него создаётся скриптstartup.nsh, в котором указывается команда загрузки ядра с нужным command line. А Shell, в свою очередь, добавляется как пункт загрузки.
    • Существует ещё одна проблема: добавление пункта возможно только для одного пути ядра, при этом ram-disk не видится. В большинстве статей рекомендуют при этом пересобирать ядро со встроенным initrd. Точно не знаю — проблема ли ядра это, или загрузчика. Но на текущий момент в 90% случаев всё поддерживается и пересобирать ядро не нужно.

    Dualboot без загрузчика

    Если у вас установлены 2 системы одновременно, и всё равно не хочется ставить сторонний загрузчик, можно добавить обе в пункты загрузки UEFI и подкорректировать предпочитаемый boot order. Загрузчик Windows обычно располагается в \EFI\Microsoft\BOOT\bootmgfw.efi.

    Итого

    Если всё сделано правильно, перегружаемся, вызываем Boot Menu, выбираем добавленный нами пункт и смотрим на почти мгновенную загрузку. В случае с SSD, FastBoot, Readahead и Arch Linux — около 3-4 секунд. Домашний сервер уже год загружается без всяких сторонних загрузчиков, используя EFI Boot STUB.
    Конечно, выигрыш в скорости тут минимальный, но, как пишут знающие люди типа Roderick Smith, иногда в режиме EFI Boot происходит «более адекватная» инициализация оборудования, чем в режимах совместимости.

    Заключение

    По причине относительной сырости прошивок UEFI и совершенно различных реализаций, я не стал приводить примеры кода. В каждом случае может существовать своя проблема. Надеюсь, описанное мной поможет понять общий принцип и применить к своему случаю.
    Также рекомендую прошиться последней версией UEFI с сайта производителя материнской платы.

    Источник

    Оцените статью